Grade: Math 2 Unit: 1

	Standards/Topics	Conceptual Understanding	Procedural Skill & Fluency	Application
•	8.EE.1	Properties of Exponents Lesson 1 Pre-Assessment	Properties of Exponents Lesson 1 Pre-Assessment	
•	N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $(5^{1/3})^3$ must equal 5 because we want $(5^{1/3})^3 = 5^{(1/3)^3}to$ hold, so $(5^{1/3})^3$ must equal 5.	Check Their Work Rational Expressions Lesson 1 Formative	Check Their Work Rational Expressions Lesson 1 <i>Formative</i>	
•	N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Check Their Work Rational Expressions Lesson 1 Formative	Check Their Work Rational Expressions Lesson 1 Formative	
•	N.RN.3 Explain why the sum or product of two rational numbers is rational, that the sum of a rational number and an irrational number is irrational, and that the product of a nonzero rational number and an irrational number is irrational.	Operations on Rational and Irrational Numbers Lesson 2 Formative/Summative	Operations on Rational and Irrational Numbers Lesson 2 <i>Formative/Summative</i>	Applying Rational and Irrational Numbers Lesson 2 Formative Answer Key & Rubric

 A.SSE.1 Interpret expressions that represent a quantity in terms of its context. b) Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.* 	Operations on Polynomials Formative/Summative Answer Key Tiling Exit Slip Lesson Formative Answer Key	Take a Chance on Polynomials Formative Observation Checklist	
 A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see x⁴-y⁴ as (x²)²- (y²)², thus recognizing it as a difference of squares that can be factored as (x² – y²)(x² + y²). 		Operations on polynomials Formative/Summative Answer Key Take a Chance on Polynomials Formative Observation Checklist	
 A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. 		Operations on Polynomials Formative/Summative Answer Key	
N.CN.1 Know there is a complex number <i>I</i> such that $i^2 = -1$, and every complex number has the form <i>a</i> + <i>bi</i> with <i>a</i> and <i>b</i> real.	Operations on Complex Numbers Lesson 4 <i>Formative</i> Answer Key	Operations on Complex Numbers Lesson 4 <i>Formative</i> Answer Key	
 N.CN.2 Use the relation i² =- 1 and the commutative, associate, and distributive properties to add, subtract, and multiply complex numbers. 	Operations on Complex Numbers Lesson 4 <i>Formative</i> Answer Key	Operations on Complex Numbers Lesson 4 <i>Formative</i> Answer Key	

Pre-Assessment(s)	Formative Assessment(s)	Summative Assessment(s)	Self-Assessment(s)
Properties of Exponents	Check Their Work	Operations on Rational and	
Pre-Assessment	Rational Expressions	Irrational Numbers	
	Operations on Rational	Operations on Polynomials	
	and Irrational Numbers	Take a Chance on	
	Operations on polynomials	Polynomials	
	Take a Chance on		
	Polynomials		
	Operations on complex		
	numbers		

Sample Lesson Sequence:

- 1. N.RN.1, 2 Extend the properties of integer exponents to rational exponents, and show the relationship between rational exponents and radical expressions. (7 days)
 - a. Use exponent rules with rational exponents.
 - b. Switch between radical notation and rational exponent notation.
- 2. N.RN.3 Compare and contrast operations involving irrational and rational numbers
 - a. Looking at rational and irrational numbers what happens when you add, subtract, multiply, and divide them in different combinations?
- 3. A.SSE.1, 2, A.APR.1 Learn how properties and operations on polynomials are connected to those of real numbers. (5 to 6 Days)
 - a. Complete operations on polynomials (add, subtract, multiply).
 - b. Closed and not closed?
- 4. N.CN.1, 2 Establish the Complex Numbers System, including real and non-real numbers.
 - a. Equations with a negative discriminate.
 - b. Complex numbers (real and non-real).
 - c. Complete operations with complex numbers.